Timing of Early Developmental Stages in Embyos of Tripneustes gratilla (Linnaeus, 1758) (Echinodermata: Echinoidea)

Main Article Content

Armin Coronado
Mark Louie Lopez
Ma. Vivian Camacho
Maribel L. Dionisio-Sese

Abstract

Sea urchin is one of the most important subjects in developmental biology studies due to its rapid and simple development. Timing for its development is a key component for most experiments. However, available data often vary due to the effect of temperature and other external factors. With this, standardization on the timing of the early developmental stages in embryos of Tripneustes gratilla was conducted in this study. Induced spawning and in-vitro fertilization were done on the collected sea urchins. Morphology of the embryo and timing for each developmental stage including early cleavage stages, morula, and blastula were studied. Sea urchin embryos started its development at 2 minutes after fertilization and reached blastula stage after 6 hours. Developmental stages of T. gratilla embryos exhibited embryological distinction from one another and tend to develop rapidly after fertilization making it an appropriate model organism for biological researches.

Downloads

Download data is not yet available.

Article Details

Section

Articles

How to Cite

Timing of Early Developmental Stages in Embyos of Tripneustes gratilla (Linnaeus, 1758) (Echinodermata: Echinoidea). (2021). PUP Journal of Science and Technology, 11(1), 15-21. https://doi.org/10.70922/atep7e48

References

Adelson, D. L. & Humphreys, T. (1988). Sea urchin morphogenesis and cell-hyalin

adhesion are perturbed by a monoclonal antibody specific for hyaline. Development,

104(3), 391-402.

Briggs, E. & Wessel, G. M. (2006). In the beginning: animal fertilization and sea urchin

development. Dev Biol, 300(1), 15-26.

Capinpin, E. C. (2015). Growth and survival of sea urchin (Tripneustes gratilla) fed

different brown algae in aquaria. Int J Fauna Biol Stud, 2(3), 56-60.

Costa-Lotufo, L. V., Ferreira, M. A. D., Lemos, T. L. G., Pessoa, O. D. L., Viana, G. S.

B., & Cunha, G. M. A. (2002). Toxicity to sea urchin egg development of the

quinone fraction obtained from Auxemma oncocalyx. Braz J Med Biol Res, 35(8),

927-930.

Ernst, S. G. (1997). A century of sea urchin development. Am Zool, 37(3), 250-259.

Ghorani, V., Mortazavi, M. S., Mohammadi, E., Sadripour, E., Soltani, M., Mahdavi

Shahri, N., & Ghassemzadeh, F. (2012). Development of developmental stages in the

sea urchin. Echinometra mathaei. Iran J Fish Sci, 11(2), 294-304.

Junio-Meñez, M. A., Macawaris, N. D., & Bangi, H. G. P. (1998). Community-based sea

urchin (Tripneustes gratilla) grow-out culture as a resource management tool. Can

Spec Publ Fish Aquat Sci, 125, 393-399.

King, C. K. & Riddle, M. L. (2001). Effects of metal contaminants on the development of

the common Antarctic sea urchin Strechinus neumayeri and comparisons of

sensitivity with tropical and temperate echinoids. Mar Ecol-Prog Ser, 215, 143-154.

Kominami, T. & Takata, H. (2003). Timing of early developmental events in embryos of

sea urchin Echinometra mathaei. Zool Sci, 20(5), 617-626.

Levitan, D. R., Sewell, M. A., & Chia, F. S. (1991). Kinetics of fertilization in the sea

urchin Strongylocentrotus franciscanus: interaction of gamete dilution, age and

contact time. Biol Bull, 181(3), 371-378.

Levitan, D. R., TerHorst, C. P., & Fogarty, N. D. (2007). The risk of polyspermy in three

congeneric sea urchins and its implications for genetic incompatibility and

reproductive isolation. Evolution, 61(8), 2007-2014.

Manuel, J. I. J., Prado, V. V., Tepait, E. V., Estacio, R. M., Galvez, G. N., & Rivera, R.

N. (2013). Growth performance of the sea urchin, Tripneustes gratilla in cages under

La Union condition, Philippines. Int J Sci Res, 5(1), 195-202.

Masuda, M. & Sato, H. (1984). Asynchronization of cell divisions concurrently related

with ciliogenesis in sea urchin blastulae. Dev Growth Differ, 26(3), 281-294.

Mazur, J. E. & Miller, J. W. (1971). A description of the complete metamorphosis of the

sea urchin Lytechinus variegatus cultured in synthetic sea water. 1971. Ohio J Sci,

71, 30-36.

Moulin, L., Catarino, A. I., Claessens, T., & Dubois, V. (2011). Effects of seawater

acidification on early development of the intertidal sea urchin Paracentrotus lividus

(Lamarck, 1816). Mar Pollut Bull, 62(1), 48-54.

Pinto, L. M. (2009). Testing evolutionary developmental hypothesis with sea urchins: a

study of plasticity and homology. MSc Thesis. McMaster University, Hamilton,

Ontario, Canada. Russo, R., Bonaventura, R., Zito, F., Schröder, H. C., Müller, I., Muller, W. E., &

Matranga, V. (2003). Stress to cadmium monitored by metallothionein gene

induction in Paracentrotus. Cell Stress Chaperones, 8(3), 232-241.

Schatten, G. & Hülser, D. (1983). Timing the early events during sea urchin fertilization.

Dev Biol, 100(1), 244-248.

Semenova, M. N., Kiselyov, A., & Semenov, V. V. (2006). Sea urchin embryo as model

organism for the rapid functional screening of tubulin modulators. BioTechniques,

40(6), 765-774.

Shen, S. S. & Bugart, L. J. (1985). Intracellular sodium activity in the sea urchin egg

during fertilization. J Cell Biol, 101(2), 420-426.

Shimek, R. L. (2018). The toxicity of some freshly mixed artificial sea water: a bad

beginning for a reef aquarium. Reefkeeping: an online magazine for the marine

aquarist, Available at http://reefkeeping.com/issues/2003-03/rs/feature/index.php,

accessed August 2018.

Talaue-McManus, L. & Kesner, K. P. N. (1993, June). Valuation of a Philippine

municipal sea urchin fishery and implications of its collapse, 229-239. In Juinio-

Meñez, M. A. & Newkirk, G. F. Philippine Coastal Resources Under Stress. Selected

papers from the Fourth Annual Common Property Conference, Manila, Philippines.

Similar Articles

You may also start an advanced similarity search for this article.